
Owning the LAN in 2018
Defeating MACsec and 802.1x-2010

DEF CON 26
Gabriel “solstice” Ryan

About: Digital Silence

Denver-based security consulting firm:

§ Penetration testers who give a !@#$

§ Red teaming

§ Penetration Testing

§ Reverse-engineering / advanced appsec / research

Twitter (for those of you who are into that sort of thing): @digitalsilence_

https://twitter.com/digitalsilence_

About: Gabriel Ryan (a.k.a. solstice)
Co-Founder / Senior Security Assessment Manager @ Digital Silence

§ Former Gotham Digital Science, former OGSystems

§ Red teamer / Researcher / New Dad

Twitter: @s0lst1c3

LinkedIn: ms08067

Email: gabriel@digitalsilence.com

https://twitter.com/s0lst1c3
https://www.linkedin.com/in/ms08067/
mailto:gabriel@digitalsilence.com

Introduction to 802.1x

What is 802.1x?

§ Authentication protocol

§ Used to protect a local area network (LAN) or wireless
local area network (WLAN) with rudimentary authentication

802.1.x defines an exchange between three parties:

§ supplicant – the client device that wishes to connect to the
LAN [1][2][9]

§ authenticator – a network device such as a switch that
provides access to the LAN [1][2][9]

§ authentication server – a host that runs software that
implements RADIUS or some other Authorization,
Authentication, and Accounting (AAA) protocol [1][2][9]

§ authenticator can be thought of as a gatekeeper

§ supplicant connects to a switch port and provides the authenticator
with its credentials [1][2][9]

§ authenticator forwards credentials to the authentication server [1][2][9]

§ Authentication server validates the credentials, and either allows or
denies access the network [1][2][9]

802.1x is (typically) a four step sequence:

1. Initialization

2. Initiation

3. EAP Negotiation

4. Authentication
[1][2][9]

Ports have two states:

§ Authorized – traffic is unrestricted

§ Unauthorized – traffic is restricted to 802.1x
[1][2][9]

Step 1: Initialization

1. Supplicant connects to switch port, which is disabled

2. Authenticator detects new connection, enables switch port
in unauthorized state

[1][2][9]

Step 2: Initiation

1. (optional) Supplicant sends EAPOL-Start frame [1][2][9]

2. Authenticator responds with EAP-Request-Identity frame
[1][2][9]

3. Supplicant sends EAP-Response-Identity frame (contains
an identifier such as a username) [1][2][9]

4. Authenticator encapsulates EAP-Response-Identity in a
RADIUS Access-Request frame and forwards it to
Authentication Server [1][2][9]

Step 3: EAP Negotiation

Long story short:
supplicant and
authentication
server haggle until
they decide on an
EAP method that
they’re both
comfortable with.
[1][2][9]

Step 4: Authentication

§ Specific details of how authentication should work are
dependent on the EAP method chosen by the
authentication server and supplicant [1][2][9]

§ Always will result in a EAP-Success or EAP-Failure
message [1][2][9]

§ Port is set to authorized state if EAP-Success, otherwise
remains unauthorized [1][2][9]

What is EAP?

Extensible Authentication Protocol (EAP):

It’s an authentication framework:

§ Not really a protocol, only defines message formats

§ Individual EAP implementations are called ”EAP methods”

§ Think of it as a black box for performing authentication

Notable EAP methods…

EAP-MD5

EAP-PEAP

EAP-TLS

Brief History of Wired Port Security

Brief History of Wired Port Security

2001 – the 802.1x-2001 standard is created to provided
rudimentary authentication for LANs [1]

2004 – the 802.1x-2004 standard is created as an
extension of 802.1x-2001 to facilitate the use of
802.1x in WLANs extended 802.1x-2001 for use
in WLAN [2]

Brief History of Wired Port Security

2005 – Steve Riley demonstrates that 802.1x-
2004 can be bypassed by inserting a hub
between supplicant and authenticator [3]

§ Interaction limited to injecting UDP packets (TCP race
condition) [4]

Brief History of Wired Port Security

2011 – “Abb” of Gremwell Security creates Marvin: [5]

§ Bypasses 802.1x by introducing rogue device directly
between supplicant and switch [5]

§ No hub necessary: rogue device configured as a bridge [5]

§ Full interaction with network using packet injection [5]

Brief History of Wired Port Security

2011 – Alva Duckwall’s 802.1x-2004 bypass: [4]:

§ Transparent bridge used to introduce rogue device
between supplicant and switch [4]

§ No packet injection necessary: network interaction granted
by using iptables to source NAT (SNAT) traffic originating
from device [4]

§ More on this attack later...

Brief History of Wired Port Security

2017 – Valérian Legrand creates Fenrir: [6]:

§ Works similarly to Duckwall’s tool, but implements NATing

in Python using Scapy (instead of making calls to iptables /

arptables / ebtables) [6]

§ Modular design, support for responder, etc…

Improvements to Bridge-Based Bypass
Techniques

Let’s look at Duckwall’s 802.1x bypass more
closely…

§ Uses transparent bridge to silently introduce rogue device between
supplicant and authenticator [4]

§ Network interaction achieved by using iptables to source NAT (SNAT)
traffic originating from device [4]

§ Hidden SSH service created on rogue device by forwarding traffic to
the supplicant’s IP address on a specified port to bridge’s IP address
on port 22 [4]

Linux kernel will not forward EAPOL packets over a
bridge. Existing tools deal with this problem by
either:

§ patching the Linux kernel

§ Relying on high level libraries such as Scapy

Problems with both of these approaches:

§ Relying on Kernel patches can become unwieldy: no
publicly available Kernel patches for modern kernel
versions

§ Relying on high level tools such as Scapy can make the
bridge slow under heavy loads [17][18]

Fortunately, the situation
has dramatically improved
since Duckwall’s
contribution:

§ as of 2012, EAPOL bridging can be enabled using the proc
file system [11]

§ that means no more patching :D [11]

Improvement: Support for Side Channel Interaction

When Duckwall created his original 802.1x bypass, he had to figure
out how to provide the attacker with access to the rogue device:

§ The year was 2011 – cellular modems were unsophisticated, slow,
and expensive

§ Solution: create hidden SSH service

Problems with this approach:

§ Relies on assumption that egress filtering can be bypassed

§ Relies on pushing traffic through the target network, creating an
opportunity for detection

Our updated implementation:

§ Relies on a side channel
interface to provide
attacker with connectivity

We had to add / modify some
firewall rules to get it to work,
but totally worth it.

Demo: Improvements to Bridge-Based
Bypass Techniques

All traditional 802.1x bypasses (hub, injection, or
bridge based) take advantage of the same
fundamental security issues that affect 802.1x-2004:
[3][4][6][7]

§ The protocol does not provide encryption

§ The protocol does not support authentication on a packet-
by-packet basis

Introduction to MACsec and 802.1x-2010

These security issues are addressed in 802.1x-
2010, which uses MACsec to provide: [7]

§ Layer 2 encryption performed on a hop-by-hop basis

§ Packet-by-packet integrity checks

Support for hop-by-hop encryption particularly
important: [7]

§ Protects against bridge-based attacks

§ Allows network administrators with a means to inspect data
in transit

The 802.1x-2010 protocol works in three stages:
[7][8][9]

1. Authentication and Master Key Distribution

2. Session Key Agreement

3. Session Secure

Things to think about…

“IEEE Std 802.11 specifies media-dependent cryptographic

methods to protect data transmitted using the 802.11 MAC

over wireless networks. Conceptually these cryptographic

methods can be considered as playing the same role within

systems and interface stacks as a MAC Security Entity.” –

IEEE 802.1x-2010 Standard – Section 6.6 [9]

Parallels between MACsec and WPA

2003 – WPA1 is released

Hop-by-hop Layer 2 Encryption:

§ access point to station

Authentication provided by:

§ Extensible Authentication Protocol (EAP)

§ Pre-Shared Key (as a fallback / alternative)

Shift of focus due to WPA

Injection-based Attacks no longer possible due to Layer 2
encryption

Focus shifts to attacking authentication mechanism

§ Pre-Shared Key (PSK) – WPA Handshake Capture and Dictionary
Attack

§ EAP – Rogue AP attacks against weak EAP methods

2010 – 802.1x-2010 is released

Hop-by-hop Layer 2 Encryption using MACsec:

§ device to switch / switch to switch

Authentication provided by:

§ Extensible Authentication Protocol (EAP)

§ Pre-Shared Key (as a fallback / alternative)

Shift of focus due to MACsec

Bridge and injection-based attacks no longer possible due to
Layer 2 encryption

First thing that comes to mind: try attacking the authentication
mechanism:

§ Pre-Shared Key (PSK) – some kind of dictionary attack??? (still
working on that)

§ EAP – attacks against weak EAP methods (main takeaway of this talk)

Attacks Against WPA2-EAP

EAP-PEAP: Security Issues

Brad Antoniewicz and Josh Wright in 2008: [13]

§ attacker can use a rogue access point attack to force the supplicant
to authenticate with a rogue authentication server [13][20]

EAP-PEAP: Security Issues

Brad Antoniewicz and Josh Wright in 2008: [13]

§ So long as the supplicant accepts the certificate presented by the

attacker’s authentication server, the supplicant will transmit an EAP

challenge and response to the attacker [13][21]

§ can be cracked to obtain a plaintext username and password [13][21]

EAP-PEAP: Security Issues

MS-CHAPv2 is the strongest Inner Authentication protocol
available for use with EAP-PEAP and EAP-TTLS:

§ vulnerable to a cryptographic weakness discovered by Moxie
Marlinspike and David Hulton in 2012 [22]

§ MS-CHAPv2 challenge and response can be reduced to a single 56-
bits of DES encryption [22][23]

§ The 56-bits can be converted into a password-equivalent NT hash
within 24 hours with a 100% success rate using FPGA-based
hardware [22][23]

Back to 802.1x-2010…

Most important takeaway about 802.1x-2010 (from
an attacker’s perspective): [7]

§ It still uses EAP to authenticate devices to the network

§ EAP is only as secure as the EAP method used

Supported EAP methods:

The 802.1x-2010 standard allows any EAP method so long

as it: [7]

§ Supports mutual authentication

§ Supports derivation of keys that are at least 128 bits in length

§ Generates an MSK of at least 64 octets

Plenty of commonly seen weak EAP methods that meet these

requirements (EAP-PEAP, EAP-TTLS, etc).

I THINK YOU SEE
WHERE THIS IS
GOING

Defeating MACsec Using Rogue
Gateway Attacks

Goal: Rogue Gateway Attack

§ Force the supplicant to authenticate with attacker’s device

§ Crack hashes, authenticate with the network

802.1x-2004: MITM style bypass

802.1x-2010: Direct Access

Let’s build a rogue device…

Step 1: Device Core

Need a way to divert traffic to the rogue
device….

Mechanical A/B Ethernet Splitters

FRONT BACK

Need a way of manipulating the push switch:

§ Using relays will lead to impedance issues

§ Option B: use solenoids

Solenoids:

Push Solenoid

Pull Solenoid

Mode A: Full bypass with passive tap

Mode B: Link is routed to upstream & PHY interfaces

Implementing the attack…

Step 1: Route supplicant to rogue auth server

Step 2: Authenticate using stolen EAP credentials

Demo: Defeating MACsec Using Rogue
Gateway Attacks

Quick Detour: MAC Filtering and MAC
Authentication Bypass (MAB)

Fun fact: not all devices support 802.1x….

Not all devices support 802.1x:

§ Enterprise organizations with 802.1x protected networks
need to deploy them anyways

§ Solution: disable 802.1x on the port used by the device –
this is known as a port security exception

§ 802.1x usually replaced with MAC filtering or some other
weak form of access control

Port security exceptions:

§ Historically, very prevalent due to widespread lack of
802.1x support by peripheral devices (printers, IP
cameras, etc)

§ Low hanging fruit for attackers – much easier than trying
to actually bypass 802.1x using a bridge or hub

Port security exceptions are slowly
dying….

Support for 802.1x by peripheral device
manufacturers has increased dramatically:

§ Legacy hardware phased out, replaced with 802.1x
capable models

Port security exceptions:

§ Have become less prevalent

§ Are not quite the low-hanging fruit that they used to be

Improved adoption of 802.1x does not imply strong port
security for peripheral devices:

§ 802.1x-2010 support not a reality yet for peripheral devices

§ 802.1x-2004 can be bypassed using bridges, injections, etc

§ Adoption for secure EAP methods can be expected to be
lower than domain joined devices

What about attacking EAP?

Makes sense as an alternative to relying on port security
exceptions:

§ Adoption of secure EAP methods already low across all
device types

§ Adoption of secure EAP methods can be expected to be
lower for peripheral devices

Rogue Gateway Attack Against 802.1x-
2004

EAP-MD5

EAP-MD5 is widely used to protect peripheral
devices such as printers:

§ Easy to setup and configure

§ Still better than MAC filtering

Entire process occurs over plaintext (bad bad bad bad bad)
Brad Antoniewicz and Josh Wright in 2008: [13]

§ attacker can capture MD5-Challenge-Request and MD5-Challenge-
Response by passively sniffing traffic [13]

§ Dictionary attack can be used to obtain a password using captured
data [13]

Fanbao Liu and Tao Xie in 2012: [19]

§ EAP-MD5 credentials can be recovered even more
efficiently using length-recovery attack [19]

Leveraging what we know about how to attack EAP-MD5 and

802.1x-2004:

1. Use bridge-based approach to place rogue device between supplicant

and authenticator

2. Wait for the supplicant to authenticate, and sniff the EAP-MD5-

Challenge and EAP-MD5-Response when it does
[13]

3. Crack credentials, connect to network using Bait n’ Switch

One major drawback to this approach:

§ We must wait for the supplicant to reauthenticate with the switch

Realistically, this will not happen unless supplicant is
unplugged

§ disabling a virtual network interface is not enough

§ Using mechanical splitters is an option, but the less overhead the
better

EAP-MD5 Forced Reauthentication
Attack Against 802.1x-2004

First two steps of the EAP authentication process: [1][2][9]

1. (optional) supplicant sends the authenticator an EAPOL-Start frame

2. The authenticator sends the supplicant an EAP-Request-Identity frame

Problem: supplicant has no way of verifying if incoming EAP-
Request-Identity frame has been sent in response to an
EAPOL-Start.

What this means: we can force reauthentication by sending
an EAPOL-Start frame to the authenticator as if it came from
the supplicant (MAC spoofing):

§ Result: authenticator will send EAP-Request-Identity frame to the
actual supplicant, kickstarting the reauthentication process

§ Both the authenticator and supplicant believe that the other party has
initiated the reauthentication attempt

Demo: Forced Reauthentication

EAP-MD5 Forced Reauthentication Attack:

1. Introduce rogue device into the network between authenticator and
supplicant

2. Start transparent bridge and passively sniff traffic

3. Force reauthentication by sending spoofed EAPOL-Start frame to
the authenticator

4. Captured and crack EAP-MD5-Challenge and EAP-MD5-
Response

Demo: EAP-MD5 Forced
Reauthentication Attack

Proposed Mitigation – safety-bit in the EAP-Request-Identity
frame:

§ set to 1 when the frame was sent in response to an EAPOL-Start frame

§ Checked when supplicant receives an EAP-Request-Identity frame

§ Authentication process aborted if safety bit set to 1 and supplicant did
not recently issue EAPOL-Start frame

Closing Thoughts

Closing Thoughts

Our contributions:

§ Rogue Gateway and Bait n Switch – Bypass 802.1x-2010 by attacking
its authentication mechanism

§ Updated & improved existing 802.1x-2004 bypass techniques

§ EAP-MD5 Forced Reauthentication attack – improved attack against
EAP-MD5 on wired networks

Closing Thoughts

Key takeaways (1 of 2):

§ Port security is still a positive thing (keep using it!)

§ Port security is not a substitute for a layered approach to network
security (i.e. deploying 802.1x does not absolve you from patch
management responsibilities)

Closing Thoughts

Key takeaways (2 of 2):

§ Benefits provided by 802.1x can be undermined due to continued use
of EAP as authentication mechanism

§ Improved 802.1x support by peripheral device manufacturers largely
undermined by lack of support for 802.1x-2010 and low adoptions /
support rates for strong EAP methods

Blog post & whitepaper:
https://www.digitalsilence.com/blog/

Tool:
github.com/s0lst1c3/silentbridge

https://www.digitalsilence.com/blog/
https://github.com/s0lst1c3/silentbridge

References:
[1] http://www.ieee802.org/1/pages/802.1x-2001.html

[2] http://www.ieee802.org/1/pages/802.1x-2004.html

[3] https://blogs.technet.microsoft.com/steriley/2005/08/11/august-article-802-1x-on-wired-networks-considered-harmful/

[4] https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf

[5] https://www.gremwell.com/marvin-mitm-tapping-dot1x-links

http://www.ieee802.org/1/pages/802.1x-2001.html
http://www.ieee802.org/1/pages/802.1x-2004.html
https://blogs.technet.microsoft.com/steriley/2005/08/11/august-article-802-1x-on-wired-networks-considered-harmful/
https://www.defcon.org/images/defcon-19/dc-19-presentations/Duckwall/DEFCON-19-Duckwall-Bridge-Too-Far.pdf
https://www.gremwell.com/marvin-mitm-tapping-dot1x-links

References:
[6]https://hackinparis.com/data/slides/2017/2017_Legrand_Valerian_802.1x_Network_Access_Control_and_Bypass_Techniques.pdf

[7] https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/identity-based-networking-services/deploy_guide_c17-663760.html

[8] https://1.ieee802.org/security/802-1ae/

[9] https://standards.ieee.org/findstds/standard/802.1X-2010.html

[10] http://www.ieee802.org/1/files/public/docs2013/ae-seaman-macsec-hops-0213-v02.pdf

https://hackinparis.com/data/slides/2017/2017_Legrand_Valerian_802.1x_Network_Access_Control_and_Bypass_Techniques.pdf
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/identity-based-networking-services/deploy_guide_c17-663760.html
https://1.ieee802.org/security/802-1ae/
https://standards.ieee.org/findstds/standard/802.1X-2010.html
http://www.ieee802.org/1/files/public/docs2013/ae-seaman-macsec-hops-0213-v02.pdf

References:
[11] https://www.gremwell.com/linux_kernel_can_forward_802_1x

[12] https://www.intel.com/content/www/us/en/support/articles/000006999/network-and-i-o/wireless-networking.html

[13]http://www.willhackforsushi.com/presentations/PEAP_Shmoocon2008_Wright_Antoniewicz.pdf

[14] https://link.springer.com/content/pdf/10.1007%2F978-3-642-30955-7_6.pdf

[15] https://support.microsoft.com/en-us/help/922574/the-microsoft-extensible-authentication-protocol-message-digest-5-eap

https://www.gremwell.com/linux_kernel_can_forward_802_1x
https://www.intel.com/content/www/us/en/support/articles/000006999/network-and-i-o/wireless-networking.html
http://www.willhackforsushi.com/presentations/PEAP_Shmoocon2008_Wright_Antoniewicz.pdf
https://link.springer.com/content/pdf/10.1007/978-3-642-30955-7_6.pdf
https://support.microsoft.com/en-us/help/922574/the-microsoft-extensible-authentication-protocol-message-digest-5-eap

References:
[16] https://tools.ietf.org/html/rfc3748

[17] https://code.google.com/archive/p/8021xbridge/source/default/commits

[18] https://github.com/mubix/8021xbridge

[19] https://hal.inria.fr/hal-01534313/document

[20] https://sensepost.com/blog/2015/improvements-in-rogue-ap-attacks-mana-1%2F2/

https://tools.ietf.org/html/rfc3748
https://code.google.com/archive/p/8021xbridge/source/default/commits
https://github.com/mubix/8021xbridge
https://hal.inria.fr/hal-01534313/document
https://sensepost.com/blog/2015/improvements-in-rogue-ap-attacks-mana-1/2/

References:
[21] https://tools.ietf.org/html/rfc4017

[22] http://web.archive.org/web/20160203043946/https:/www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/

[23] https://crack.sh/

[24] https://tools.ietf.org/html/rfc5216

[25] https://4310b1a9-a-93739578-s-sites.googlegroups.com/a/riosec.com/home/articles/Open-Secure-Wireless/Open-Secure-
Wireless.pdf?attachauth=ANoY7cqwzbsU93t3gE88UC_qqtG7cVvms7FRutz0KwK1oiBcEJMlQuUmpGSMMD7oZGyGmt4M2HaBhHFb07j8Gvmb_H
WIE8rSfLKDvB0AI80u0cYwSNi5ugTP1JtFXsy1yZn8-85icVc32PpzxLJwRinf2UGzNbEdO97Wsc9xcjnc8A8MaFkPbUV5kwsMYHaxMiWwTcE-
A8Dp49vv-tmk86pNMaeUeumBw_5vCZ6C3Pvc07hVbyTOsjqo6C6WpfVhd_M0BNW0RQtI&attredirects=0

https://tools.ietf.org/html/rfc4017
http://web.archive.org/web/20160203043946/https:/www.cloudcracker.com/blog/2012/07/29/cracking-ms-chap-v2/
https://crack.sh/
https://tools.ietf.org/html/rfc5216
https://4310b1a9-a-93739578-s-sites.googlegroups.com/a/riosec.com/home/articles/Open-Secure-Wireless/Open-Secure-Wireless.pdf?attachauth=ANoY7cqwzbsU93t3gE88UC_qqtG7cVvms7FRutz0KwK1oiBcEJMlQuUmpGSMMD7oZGyGmt4M2HaBhHFb07j8Gvmb_HWIE8rSfLKDvB0AI80u0cYwSNi5ugTP1JtFXsy1yZn8-85icVc32PpzxLJwRinf2UGzNbEdO97Wsc9xcjnc8A8MaFkPbUV5kwsMYHaxMiWwTcE-A8Dp49vv-tmk86pNMaeUeumBw_5vCZ6C3Pvc07hVbyTOsjqo6C6WpfVhd_M0BNW0RQtI&attredirects=0

References:
[26] https://txlab.wordpress.com/2012/01/25/call-home-ssh-scripts/

[27] https://txlab.wordpress.com/2012/03/14/improved-call-home-ssh-scripts/

[28] https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/software/release/12-2_37_se/command/reference/cr1/cli3.html#wp1948361

[29] https://www.juniper.net/documentation/en_US/junos/topics/concept/port-security-persistent-mac-learning.html

[30] https://tools.ietf.org/html/rfc3579

https://txlab.wordpress.com/2012/01/25/call-home-ssh-scripts/
https://txlab.wordpress.com/2012/03/14/improved-call-home-ssh-scripts/
https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst3560/software/release/12-2_37_se/command/reference/cr1/cli3.html
https://www.juniper.net/documentation/en_US/junos/topics/concept/port-security-persistent-mac-learning.html
https://tools.ietf.org/html/rfc3579

References:
[31] https://tools.ietf.org/html/rfc5281

https://tools.ietf.org/html/rfc5281

